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chemical components of 25 tobacco leaf samples. The multivariate data satisfied the normality
assumption. The data for this study, which contains three criterion measures and six predictor
variables, were analyzed using the “SAS” statistical software package. Based on the results
obtained, and the hypotheses carried out, it was revealed that out of the three sample canonical
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INTRODUCTION Canonical correlation analysis focuses on the correlation
between a linear combination of the variables in one set and a
linear combination of the variables in another set. The idea is
first to determine the pair of linear combinations having the
largest correlation. Next, we determine the pair of linear
combinations having the largest correlation among all parts
uncorrelated with the initially selected pair. The process
continues. The pairs of linear combinations are called the
canonical variables, and their correlations are called canonical
correlations. The canonical correlations measure the strength
of association between the two sets of variables. The
maximization aspect of the technique represents an attempt to
concentrate a high-dimensional relationship between two sets
of variables into a few pairs of canonical variables. With a
growing number of large scales genomic data the focus these
days have been in finding the relationship between two or
more sets of variables. One of the classical methods that can
be used in cases when we have two set of variables from the
same subject is Canonical Correlation Analysis (CCA) but it
lacks biological interpretation for situations in which each set
of variables has more than thousands of variables. This issue
*Corresponding author: Ekezie Dan Dan was first addressed by Parkhomenko et al. (2009) who

Department of Statistics, Imo State University, PMB 2000, Owerri propose.:d a novel method for Sparse Canonical Correlation
Nigeria Analysis (SCCA).

In many research settings, the social scientist encounters a
phenomenon that is best described not in terms of a single
criterion but, because of its complexity, in terms of a number
of response measures (William and Matthew; 1984). In such
cases, interest may center on the relationship between the set
of criterion measures and the set of explanatory factors. In a
manufacturing process, for instance, we might be concerned
with the relationship between a set of organic chemical
constituent variables, on the one hand, and various inorganic
chemical constituent variables on the other hand, as it is
applicable in this paper. In the business or economic fields, we
might be interested in the relationship between a set of price
indices and a set of production indices, with a view towards
(say) predicting one from the other. The study of the
relationship between a set of predictor variables and a set of
response measures is known as canonical correlation analysis.
Canonical correlation analysis seeks to identify and quantify
the associations between two sets of variables (Johnson and
Wichern; 1992).
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Recently there are a few other proposed methods to find
relationship between two sets of variables based on different
penalty functions but there are very few comparative studies
that have been done so far. A few of the proposed methods are
Waaijenborg et al. (2008) who wused SCCA to find
relationships between the effect of copy number alterations on
gene expression and progression of glioma, Witten and
Tibshirani (2009) used SCCA to find association between
gene expression and array comparative genome hybridization
(CGH) measurements, Parkhomenko et al. (2009) and
Waaijenborg et al. (2009) used SCCA technique to find
correlation between Single-nucleotide polymorphism (SNP)
and gene expression data, and Lee etal. (2011) used SCCA
approach to find association between gene expression and
proteomic data. SCCA was first introduced by Parkhomenko
et al. (2009) in which a sparseness parameter controls how
many variables will be included from each data set. The
algorithm proposed by Witten ef al. (2009) for computing
Sparse CCA is similar to that of Waaijenborg ef al. (2008).
Waaijenborg et al. (2008) penalized the classical CCA as an
iterative regression and then applied an elastic net penalty to
find the canonical vectors. The elastic net is a combination of
ridge regression and lasso. For more detail about ridge
regression, see Hoerl (1962).

MATERIALS AND METHODS

The method of analysis used in this study is the Canonical
Correlation Analysis. This paper shall focus on how to analyze
a sample of 25 samples of tobacco leaf for organic and
inorganic chemical constituents in a manufacturing company
using the SAS Statistical Software Package.

Canonical Variates and Canonical Correlations

In this paper, we shall be interested in measures of association
between two groups of variables. The first group of p variables
is represented by the (p x 1) random vector X", The second
group of q variables is represented by the (q x 1) random
vector X'¥. We assume, in the theoretical development, that
X" represents the smaller set, so that p < q.

For the random vectors X" and X(z), let

E(X(l)) = H(l); COV(X(I)) =X,
E(XX?)=p?; Cov(X?)=%,, (D)
Cov(X",X?)=%, =%,

It will be convenient to consider X" and X® jointly, so, the
random vector

x0T
X3

x®0] | X, RUR )
X = I e =
(prox) | X® le
xP
2)
_X‘i _

has mean vector

(p+q)x1)
and covariance matrix
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The covariances between pairs of variables from different sets
— one variable from X", one variable from X® — are
contained in X, or, equivalent, in X,. That is, the pq elements
of X1, measure the association between the two sets. When p
and q are relatively large, interpreting the elements of X;,
collectively is ordinarily hopeless (Johnson and Wichern;
1992). Moreover, it is often linear combinations of variables
that are interesting and useful predictive or comparative
purposes. The main task of canonical correlation analysis is to
summarize the associations between the X" and X sets in
terms of a few carefully chosen covariance (or correlations)
rather than the pq covariance in X;,.

Linear combinations Z = CX have

R, = E(Z)= E(CX)=Cp, } L6

>, =CoW(Z)=CoW(CX)=CX, C'
and provide simple summary measures of a set of variables.

U=aX"
Let V- X ... (6)

for some pair of coefficient vectors a and b. Using Equations
(5) and (6),

Var(U)=a'Cov(X")a=2a'%, a
Var(V) =b'Cov(X"")b =b'E b (7
Cov(U,V) =a'Cov(X",X?)b =22 ,b

We shall seek coefficient vectors a and b such that

a’X.b
\/a’lea\/b'Zzzb

Corr(U,V) = - (8)

is as large as possible. We then define:

The first pair of canonical variables are the pair of linear
combinations U;, V; having unit variances, which maximize
the correlation in Equation (8);
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The second pair of canonical variables are the linear
combinations U,, V, having unit variances, which maximize
the correlation in Equation (8) among all choices which are
uncorrelated with the first pair of canonical variables.

At the kth step

The kth pair of canonical variables are the linear combinations
Uy, Vi having unit variances, which maximize the correlation
in Equation (8) among all choices uncorrelated with the
previous k — 1 canonical variable pairs.

The correlation between the kth pair of canonical variables is
called the kth canonical correlation. If the original variables

/
1 2 1
[Zg)’ Z()"..’Z()]

are standardized with ZV =

/
yARES [Z(l) Z(z) .,ZS)] from first principles, the

canonical varaites are of the form

U, =a; VAL —ekpnl/zZ(l) .
V b’ Z(z) fkpzz/zz(z) (9

Here Cov(Z"") = p11, CoW(Z?) = pys, Cov(Z", %)) = py, =
Pz1 and e and f are the eigenvectors of
-1/2 -1/2 -1/2

p p12p22p21p11 and p22 p22pllp12p22 )

respectively. The canonical correlations, p i » satisfy
Corr(U,,V,)=p,, k=1,2,....p ...(10)

%2 %2
2p, 2...2p,
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the matrix P, p,popyPy, 0 (or

-1/2 -1/2

P p22p11p12p22 )-
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where p, are the nonzero eigenvalues of

equivalently, of

It should be noted that:

ap (XY =) =2 (X — ) +a, (X =) 4+ 2, (X0 = )
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X X0~ p® (X )
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where Var(Xi(l))z i=1, 2,
canonical coefficients for the
7O =X —u"y/ o, . are simply related to the
(1)

.., p. Therefore, the

i »
standardized variables,

canonical coefficients attached to the original variables X
Specifically, if a’y is the coefficient vector for the kth
canonical variate Uy, then a{(Vlll/2 is the coefficient vector for
the canonical variate constructed from the standardized

variables Z'". Here Vlll/2 is the diagonal matrix with ith

diagonal element 4/C; . Similarly, b;(Vzléz is the coefficient
vector for the canonical varaite constructed from the set of

. . . /2 . .
standardized variables Z?. In this case sz/ is the diagonal

matrix with ith diagonal element /G, =+/Var(X!"). The

canonical correlations are unchanged by the standardization.
However, the choice of the coefficient vectors a,, b, will not

_ A2
- pk+1 .

be unique if p;
Identifying the Canonical Variables

Even though the canonical variables are artificial, they can
often be “identified” in terms of the subject matter variables.
This identification is often aided by computing the correlations
between the canonical variates and the original variables.
These correlations, however, must be interpreted with caution.
They only provide univariate information in the sense that they
do not indicate how the original variables contribute jointly to
the canonical analyses. For this reason, many investigators
prefer to assess the contributions of the original variables
directly from the standardized coefficients in Equation (9).

Let A
(pxp)

=[a}, as, ..., a,) and (q]}q) = [bl,bz,...,bq]', S0

that the vectors of canonical variables are

U =AX", Vv =BXY?, (11)

(px1) (gx1)

where we are primarily interested in the first p canonical
variables in V. Then

Cov(U, XD) = Cov(AXD, X =AY, ... (12)

Because Var(U;)) =1, COI’I’(Ui ,X(l)) is obtained by dividing
Cov(U, X"y by 4fvar(X\")=cl>. Equivalently,
Corr(U,,X\") = Cov(U,,5,,’X\") . Introducing the (p x
Vo 1/ 2

we have, in matrix terms,

p) diagonal  matrix with kth diagonal

-1/2
element G, ~,

= Corr(U,X") = Cov(U, V;>X®) = Cov(AX®, V;2X")

prx(l)
(pxp)

-1/2
AZIIVII

Similar calculations for the pairs (U, X(z)), v, X(z)) and (V,
X" yield

pU’X(l) = 14211[/111/2 IOV,X(ZD = AZZZV;Z]/Z
(pxp) / (g%9) / ...(13)
-1/2 -1/2
Py xn = AX )V, Py xo = AZ )V
(p=q) (gxp)

where \72_2l 2 is the (q x q) diagonal matrix with ith diagonal

element +/var(X?) .

Canonical variables derived from standardized variables are
sometimes interpreted by computing the correlations.
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Pyzn = A pis
pU,Z(z) = AZIOIZ;

p,/,zm = szzz

.(14)
=B.p,

p[/)z(])

where 4. and B_ are the matrices whose rows contain the
(pxp) (9%q)

canonical coefficients for the Z" and Z'® sets, respectively.

The correlations in the matrices displayed is Equation (14)

have the same numerical values as those appearing in Equation

(13), that is, pU <0 =Py 0 and so forth. This follows

because, for example,
_ —1/2 _ —1/2y7-1/2 —1/2 _ _
Pyxn = AZ Vi T =AVV TR VT = A = Py.zo -

The correlations are unaffected by the standardization.

The Sample Canonical Variates and Sample Canonical
Correlations

A random sample of n observations on each of the (p + q)
variables X", X' can be assembled into the ((p + q) x n) data
matrix

QY] Q) 1)
X X Xin
QY] 1) 1)
Xoy Xy X2
X(l) x(l) x(l) N x(l)
S N [ R 0 L S pn _[x X X ]
- @ |- (2) (2) ) | T A2t
X XXy, e X,
(2) (2) (2)
Xy Xy X5
(2) (2) (2)
X X X,
M
J
where X, = el (15)

The vector of sample means can be organized as

1 n
=0 _ = 1)
$0 X = " Z Xj
X = gy where = ...(16)
(p+q)x1 f 1 n
—=(2) _ & (2)
X = Z Xj

n =

Similarly, the sample covariance matrix can be arranged
analogous to the representation in Equation (4). Thus

1
S, S,
S — | (pxp)_ (pxa)
P+t | Sy E S,
(gxp) 1+ (g9%q)
where

Sy =

LS s ozof  ki-12

n
I’l—lFl

The linear combinations

U=ax"; V=bx® .. (18)

have sample correlation

= (19)

The first pair of sample canonical variates is the pair of linear

A

combinations U,,V, having unit sample variances that
maximize the ration in Equation (19).

In general: the kth pair of sample canonical variates is the

pair of linear combinations U,,V, having unit sample
variances that maximize the ratio in Equation (19) among
those linear combinations uncorrelated with the previous k — 1
sample canonical variates. The sample correlation between

fjk and \Afk is called the kth sample canonical correlation.

Data Presentation

The data used for this research was extracted from Neil H.T.
(2002), Applied Multivariate Analysis, Exercises 4.3 page
216. A sample of 25 samples of tobacco leaf for organic and
inorganic chemical constituents was used for the study. The
dependent variables considered are defined as follows:

Y, : Rate of cigarette burn in inches per 1000 seconds
Y, : Percentage sugar in the leaf
Y; : Percentage nicotine

The fixed independent variables are defined as follows.

Xi: Percentage of Nitrogen
X,: Percentage of Chlorine
X;: Percentage of Potassium
X4: Percentage of Phosphorus
Xs: Percentage of Calcium
X¢: Percentage of Magnesium

Table 1 shows the three dependent variables (Organic
Chemical constituents) and six Explanatory variables
(Inorganic Chemical constituents) of 25 samples of tobacco
leaf.

Data Analysis

The organic chemical constituents, X, and the inorganic
chemical consttuents X, were defined as:

X 1(1) Rate of cigarette burn in inches per 1000 seconds
X® = Xz(l) =| Percent sugar in the leaf

XS(I) Percent nicotine

x® Percentage of Nitrogen

xP Percentage of Chlorine
X0 = x® _ Percentage of Potassium

X Percentage of Phosphorus

xX® Percentage of Calcium

X éz’ Percentage of Magnesium



21 International Journal of Development Research, Vol. 3, Issue, 9, pp.017-023, September, 2013

Table 1: The Tobacco Data

Dependent variables

Independent variables

Subieet D ¥ v, v X X% X% X X X
1 1.55 20.05 138 202 29 217 051 347 0091
2 1.63 12.58 264 262 278 1.72 05 457 1.25
3 1.66 18.56 1.56 208 268 240 043 352 0.82
4 1.52 18.56 222 220 317 206 052 369 097
5 1.70 14.02 285 238 252 218 042 401 1.12
6 1.68 15.64 124 203 256 257 044 279 0.82
7 1.78 14.52 286 287 267 264 05 392 1.06
8 1.57 18.52 2.18 188 258 222 049 358 1.01
9 1.60 17.84 1.65 193 226 215 056 357 092
10 1.52 13.38 328 257 1.74 1.64 051 438 1.22
11 1.68 17.55 1.56 1.95 215 248 048 328 081
12 1.74 17.97 200 203 200 238 050 331 0.98
13 1.93 14.66 288 250 207 232 048 372 1.04
14 1.77 17.31 1.36 .72 224 225 052 310 0.8
15 1.94 14.32 266 253 1.74 264 050 348 093
16 1.83 15.05 2.43 1.90 1.46 1.97 046 348 0.9
17 2.09 15.47 242 218 074 246 048 316 0.86
18 1.72 16.85 216 216 284 236 049 368 095
19 1.49 17.42 212 214 330 204 048 328 1.06
20 1.52 18.55 1.87 198 290 216 048 356 0.84
21 1.64 18.74 2.10 1.89 282 204 053 3.56 1.02
22 1.40 14.79 221 207 279 215 052 349 1.04
23 1.78 18.86 200 208 314 260 050 330 0.80
24 1.93 15.62 226 221 2.81 2.18 044 416 092
25 1.53 18.56 214 2.00 3.16 222 0.51 3.37 1.07
Responses for variables X' and X® were recorded on a scale ¥, =0.11222 —0.6262% +0.4482 —0.1752 +0.36222 —0.537Z%

and then standardized. The sample correlation matrix based on
25 responses is:

1
]
B_l_l_:_ _1_1_12
- 1
RZI: Rzz
1.000 10226 -0523 0487 -0320 -0.085 -0313
~0.320 1.000 '-0.705 0430 0190 0244 -0.516 -0525
0216 -0702 1.000 '0.768 -0271 -0294 —0.045 0.686 0734
0226 —0.705 0.768 | 1.000
—|-0623 0430 -0271, -0.089 1.000
70487 0190 -0294 | —0007 ~0093 1000
—0.320 0244 -—0.045, —0.112 0074 —-0.205 1.000
—0.085 —0.516 0.686 |, 0.604 0.095 -0.583 —0.009 1.000
~0313 -0.525 0734 | 0604 0.118 —0611 0514 0729 1.000

The min(p, q) = min(3, 6) = 3 sample canonical correlations
and the sample canonical variate coefficient vectors are
displayed in Table 2.

For instance, the first sample canonical variate pair is

U, =-0.095Z" - 0.439Z." +0.665Z.

¥, =—0.470Z% —0.355Z —0.063Z —0.124Z +0.082Z +0.479Z>

= 0.933. The results
above were taken from the SAS Statistical software output

Ak
with sample canonical correlation P,

shown in Appendix. To provide interpretation for Ul and \A/ ,

the sample correlations between U, and its component

variables and V, and its component variables were computed.

Also, we provide the sample correlations between variables in
one set and the first sample canonical variate of the other set.

Again, the second sample canonical variate pair is

U,=0.990 2" -0.158 2" - 0.342 2"

with canonical correlations P = 0.842

The sample correlations between U, and its component

variables and V, and its component variables were computed,
and presented in Table 4.

Estimating Proportions of Explained Sample Variance

Using the table of sample correlation coefficients presented in
Table 3, we compute

12 1
Ry 52 Yo g[(0.189)2+(—0.876)2+(o.953)2]
=0.570

[(0 799)" +(~0.310) + ...+ (0.680)’ ]
- 0312
= %[(0176)2 +(~0.817) +(0.88)’]
= 0.496
- %[(0.857)2 +(=0.332) +...+(0.802)?]

=0.359

The first sample canonical variate, U,, of the organic

chemical constituents set accounts for 57% of the set’s total

sample variance. The next sample canonical variate, V,, of

the organic chemical constituents set accounts for 49.6% of
the set’s total sample variance. The first sample canonical

A

variates, V, and U, of the inorganic chemical constituents
set explains 31.2% and 35.9% respectively of the set’s total
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Table 2: Canonical Variate Coefficients and Canonical Correlations

Standardized variables

Standardized variables

M M M A2 (2) (2) (2) (2) (2) 2)
Zl ZZ Z3 i Zl ZZ Z3 Z4 ZS Z6
a -0.095 -0.439 0.665 0.933 l"), 0.470 -0.355 -0.063 -0.124 0.082 0.479
L 1
a 0.990 -0.158 -0.342  0.842 l"), 0.112 -0.626 0.448 -0.175 0.362 -0.537
2 2
At 0.354 1.370 1.189 0.373 2] -1.107  -0.143 1.497 0.551 1.552 0.442
a; b 3
Table 3: Sample Correlations between Original Variables and Canonical
Variables
Sample canonical variates Sample canonical variates
XD variables ~ -~ X® variables ~ N
Ul Vl Ul Vl
1 Rate of cigarette burn in 0.189 0.176 1 Percentage of Nitrogen 0.857 0.799
inches per 1000 seconds
2 Percent sugar in the leaf -0.876 -0.817 2 Percentage of Chlorine -0.332 -0.310
3 Percent nicotine 0.953 0.889 3 Percentage of Potassium -0.349 -0.325
4 Percentage of Phosphorus -0.115 -0.107
5 Percentage of Calcium 0.729 0.680
6 Percentage of Magnesium 0.802 0.749
Table 4: Correlations between Original Variables and Canonical Variables
Sample canonical variates Sample canonical variates
X variables ~ N X® variables ~ N
U2 VZ UZ VZ
1 Rate of cigarette burn in inches 0.967 0.814 1 Percentage of Nitrogen 0.086 0.073
per 1000 seconds
2 Percent sugar in the leaf -0.235 -0.198 2 Percentage of Chlorine -0.704 -0.593
3 Percent nicotine -0.017 -0.015 3 Percentage of Potassium 0.656 0.552
4 Percentage of Phosphorus -0.404 -0.340
5 Percentage of Calcium -0.331 -0.278
6  Percentage of Magnesium -0.568 -0.478
sample variance. We might infer that U, of the organic Conclusion

chemical constituents is a “better” representative of its set than

A

U, of the inorganic chemical constituents is of its set.

Using the table of sample correlation coefficients presented in
Table 4, we compute

1 3

2 2

Rzm 10, g 1;1 XUz‘z(”: 0.330
2 _ 1 26: 2 =02

RZ(z) /02 - g £ XUZ‘Z(D_ O. 55

Test of Significance of the Canonical Correlation

* *
The first two canonical correlations, P, and P, , appear to be

nonzero, small deviations from zero will show up as
statistically significant. From a practical point of view, the
third sample canonical correlation can probably be ignored
since (i) it is reasonably small in magnitude and (ii) the
corresponding canonical variate explains very little of the
sample variation in the variable sets X" and X®. Thus from
the SAS output in Appendix, the p-values for both the first and
second canonical correlation are small, implying that they are
significant, while the third canonical correlation is
insignificant because of the high p-value observed. The SAS
output revealed that there is a relationship between the organic
chemical constituents and the inorganic chemical constituents.

In light of the discussion in the analysis above, it is desirable

to conclude that U, of the organic chemical constituents is a

“better” representative of its set than U, of the inorganic

chemical constituents is of its set. Again, it can be concluded
that canonical relations exhibited by the organic chemical
constituents-inorganic chemical constituents’ data proved
statistically significant in the first two canonical correlations,
and statistically insignificant in the last (third) canonical
correlation. Finally, we concluded that relationship exists
between the organic chemical constituents and the inorganic
chemical constituents of the Tobacco leaf samples.
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